CHROM 22 141

Note

High-performance liquid chromatographic determination of alterportiol D and E in fermentation of *Alternaria porti* (Ellis) Ciferri

R. SUEMITSU*

Department of Applied Chemistry, Faculty of Engineering, Doshisha University, Kamikyo-ku, Kyoto 602 (Japan)

K. HORIUCHI

Kyoto Chromato Co. Ltd., 54 Ohyakesawa Yamashina-ku, Kyoto 607 (Japan) and

and

K. OHNISHI and M. KUBOTA

Department of Applied Chemistry, Faculty of Engineering, Doshisha University, Kamikyo-ku, Kyoto 602 (Japan)

(First received March 20th, 1989; revised manuscript received October 20th, 1989)

In the course of our investigation on pigments of *Alternaria porri* (Ellis) Ciferri, the causal fungus of black spot disease, we have isolated five modified bianthraquinone pigments from the culture liquid, named alterporriol A (Ap-A,1)¹, B (Ap-B,1)², C (Ap-C, 2)³, D (Ap-D, 3)⁴ and E (Ap-E, 3)⁴, and determined their chemical structures. Of these pigments, Ap-A, -B and -C consist of macrosporin (Mac, 4)⁵ and altersolanol A (As-A, 5), both of which are metabolic pigments of *Alternaria solani*⁶ and *Alternaria porri*⁷ and Ap-A and -B are atropisomers of each other. Likewise, Ap-D and -E were found to be atropisomers of each other and their planar and spatial structures are shown in Fig. 1 (3). Recently, Lazarovits *et al.*⁸ reported the dimers of As-A from the culture liquid of *Alternaria solani* and presented their planar structures. Comparing the structures, spectral data and other physico-chemical properties of Ap-D and -E with those of the dimers of As-A just mentioned, they were found to be the same.

Previously, we reported the high-performance liquid chromatographic (HPLC) determination of As-A, Mac and Ap-A, Ap-B and Ap-C in the fermentation of *Alternaria porri* in order to explore the biosyntheses of Ap-A, Ap-B and Ap-C⁹. The structures of Ap-D and Ap-E show that they consist of two moieties of As-A. So far as the biosyntheses of Ap-D and -E are concerned, two pathways can be considered, namely, whether As-A is first metabolized and then two moieties of As-A bond to Ap-D and -E, or Ap-D and -E are first metabolized and then their C-C linkages connecting the monomeric halves are cleaved into two halves of the molecule, two moieties of As-A. This paper deals with the HPLC determination of Ap-D and -E during the period of fermentation in order to explore their metabolic pathways.

Fig. 1. Structure of pigments 1 = Alterporriol A and B; 2 = alterporriol C; 3 = alterporriol D and E. 3A = spatial structure of alterporriol D (*R*-form); 3B = spatial structure of alterporriol E (*S*-form); 4 = macrosporin; 5 = altersolanol A.

EXPERIMENTAL

Material

As-A, Ap-D and -E were isolated as metabolic pigments of *Alternaria porri* (IFO 9762), which was isolated and donated by the Institute for Fermentation, Osaka, Japan (IFO).

High-performance liquid chromatography

HPLC was performed on a Shimadzu LC-6A liquid chromatograph equipped with a UV detector operating at 254 nm for all assays. The solvent system used was 0.05 *M* ammonium dihydrogenphosphate (adjusted to pH 2.5 with phosphoric acidacetonitrile (41:9). The column used was a YMC A-312 (Yamamura Chemical Labs.), commercially packed with reversed-phase octadecylsilica (5 μ m) (150 mm x 6.0 mm I.D.); the mobile phase flow-rate was 1.0 ml/min. Samples of 10 μ l were injected onto the column.

Fermentation and extraction of pigments

A 2% (w/v) sucrose solution of onion decoction was used as a culture medium. A number of 500-ml erlenmyer flasks containing 200 ml of the medium were sterilized in a autoclave for 20 min at 2.3 bar and 120°C. The fungi, cultured on agar for 7–10 days, were inoculated into the flasks, which were then kept at 25°C. After fermentation for 2 days, 10 ml of the culture liquid were taken and extracted with *n*-hexane (4 \times 10 ml) to remove lipids. The aqueous layer obtained was called S-2. By a similar procedure, the filtrates corresponding to fermentation periods of 5, 7, 14, 21 and 28 days were designated S-3, S-4, S-5, S-6 and S-7, respectively, plus S-1 for the blank.

RESULTS AND DISCUSSION

Determination of As-A, Ap-D and Ap-E during the fermentation period

The data obtained as mean values of nine experiments and those of one representative experiment are given in Tables I and II. The chromatograms of pigments

TABLE I

VARIATION OF PIGMENTS AT DIFFERENT STAGES OF FERMENTATION

Mean values of nine experimental results are shown. A = peak-area ratio to I.S.; B = weight ratio to I.S.; C = concentration (mg/ml), S = standard deviation (mg/ml).

Sample	Altersolanol A				Alterporriol D				Alterporriol E			
	A	В	С	S	A	В	С	S	A	B	С	S
S-1	_		_	_	_	_	_	_	_	_		
S-2	0.783	0.610	0.061	0.013	0.274	0.013	0.001	0.0006	0.284	0.023	0.002	0.0015
S-3	5.469	4.354	0.435	0.14	0.917	0.132	0.013	0.0078	1.619	0.278	0.028	0.021
S-4	6.609	5.265	0.527	0.18	2.777	0.476	0.048	0.022	2.970	0.536	0.054	0.018
S-5	4.107	3.266	0.327	0.12	2.955	0.509	0.051	0.012	3.289	0.597	0.060	0.025
S-6	0.685	0.532	0.053	0.036	2.685	0.459	0.046	0.020	2.676	0.480	0.048	0.022
S- 7	0.640	0.496	0.050	0.025	2.004	0.333	0.033	0.013	2.273	0.403	0.040	0.017

TABLE II

VARIATION	OF PIGMENTS	OBSERVED IN	NONE REPR	RESENTATIVE	EXPERIMENT	AT DIF-
FERENT STA	GES OF FERM	ENTATION				

Symbols as in Table I.

Sample	Altersolanol A				Alterporriol D				Alterporriol E			
	A	B	С	S	A	В	C	S	A	В	С	S
S-1	_		_	_	_	_	_		_		_	_
S-2	1.25	0.983	0.098	$1.1 \cdot 10^{-3}$	0.074	0.010	0.001	$1.7 \cdot 10^{-5}$	0.076	0.012	0.001	$3.1 \cdot 10^{-5}$
S-3	5.68	4.52	0.452	$5.9 \cdot 10^{-3}$	1.01	0.149	0.015	1.8.10-4	0.877	0.136	0.014	$2.8 \cdot 10^{-4}$
S-4	7.32	5.83	0.583	$1.7 \cdot 10^{-2}$	3.26	0.565	0.057	$1.1 \cdot 10^{-3}$	2.43	0.433	0.043	$5.3 \cdot 10^{-4}$
S-5	2.49	1.97	0.197	$2.9 \cdot 10^{-3}$	3.41	0.593	0.059	1.1.10-3	2.64	0.473	0.047	$1.0 \cdot 10^{-3}$
S-6	0.874	0.683	0.068	$2.1 \cdot 10^{-3}$	2.90	0.499	0.050	5.6.10-4	2.37	0.421	0.042	$1.4 \cdot 10^{-3}$
S-7	0.911	0.712	0.071	$2.4 \cdot 10^{-3}$	2.13	0.356	0.036	7.5.10~4	1.72	0.297	0.030	3.1.10-4

and the internal standard (I.S.) are shown in Fig. 2, in which the retention times (t_R) were 6.0 min (Ap-D, capacity factor, k' = 1.71), 7.8 min (As-A, k' = 2.23) and 9.6 min (Ap-E, k' = 2.74). We used the internal standard method for quantitation and benzoic acid ($t_R = 14$ min, k' = 4.00) was used as the internal standard for As-A, Ap-D and Ap-E. For example, methanolic solutions of As-A (1 mg/ml) (0.4, 0.6, 0.8, 1.0 and 1.2 ml) were placed in sample vials and 1-ml portions of methanolic solutions of benzoic acid (1 mg/ml) were added. After the volumes had been adjusted to 10 ml with methanol, 10- μ l portions of each were subjected to HPLC under the conditions mentioned above. By plotting the peak-area ratio against sample weight a calibration graph for As-A was obtained. The calibration graphs for Ap-D and Ap-E were

Fig. 2. Chromatograms of pigments and I.S. Peaks: 1 = alterportiol D (26.3%); 2 = altersolanol A (22.9%); 3 = alterportiol E (22.1%); 4 = benzoic acid (13.6%).

Fig. 3. Relationship between concentration of pigments and fermentation periods: 1 =altersolanol A; 2 =alterporriol D; 3 =alterporriol E.

obtained by using the same concentrations as that of As-A⁹. The limits of detection, based on a signal-to-noise ratio of 10 for As-A, Ap-D and Ap-E, were 0.1 μ g/ml.

The concentrations of As-A, Ap-D and Ap-E were calculated from the detector responses (peak areas) by using the method of least squares:

As-A: $y = (0.799x - 1.57 \cdot 10^{-2}) \cdot 0.1$ Ap-D: $y = (0.185x - 3.77 \cdot 10^{-2}) \cdot 0.1$ Ap-E: $y = (0.191x - 3.12 \cdot 10^{-2}) \cdot 0.1$

where y is the concentration of the pigment (mg/ml) and x is the ratio of the peak area of the pigment to that of the internal standard (I.S.).

As a practical procedure, benzoic acid (1 mg) was dissolved in each of culture liquids S-1 to S-7 and then 10 μ l of each were subjected to HPLC under the conditions given above.

The combined results obtained from nine fermentation experiments indicated that As-A was detected after fermentation for 2 days, Ap-D and Ap-E were not or only slightly detected at this time and the content of As-A was found to increase continuously for 7 days and then gradually to decrease, whereas those of Ap-D and Ap-E were found to increase continuously for up to 14 days and then gradually to decrease, as shown in Fig. 3. It is of interest that the amounts of Ap-D and Ap-E are similar throughout the fermentation period, as shown in Tables I and II.

We conclude that As-A is first formed in the early period of fermentation, and then two moieties of As-A are bonded to Ap-D and Ap-E when fungus is cultured on onion decoction medium.

REFERENCES

- 1 R. Suemitsu, T. Yamamoto, T. Miyai and T. Ueshima, Phytochemistry, 26 (1987) 3221.
- 2 R. Suemitsu, T. Sano, M. Yamamoto, Y. Arimoto, F. Morimatsu and T. Nabeshima, Agric. Biol. Chem., 48 (1984) 2611.
- 3 R. Suemitsu, T. Yamamoto, T. Ueshima and S. Yanagawase, Phytochemistry, 27 (1988) 3251.
- 4 R. Suemitsu, Y. Sakurai, K. Nakachi, I. Miyoshi, M. Kubota and K. Ohnishi, Agric. Biol. Chem., 53 (1989) 1301.
- 5 R. Suemitsu, M. Nakajima and M. Hiura, Agric. Biol. Chem., 25 (1961) 100.
- 6 A. Stoessl, Can. J. Chem., 47 (1969) 767.
- 7 R. Suemitsu and A. Nakamura, Agric. Biol. Chem., 45 (1981) 2363.
- 8 G. Lazarovits, R. Steele and A. Stoessl, Z. Naturforsch., C, 43 (1988) 813.
- 9 R. Suemitsu, K. Horiuchi, K. Ohnishi and S. Yanagawase, J. Chromatogr., 454 (1988) 406.